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ABSTRACT
The Tayler-Spruit dynamo is one of the most promising mechanisms proposed to explain angular momentum transport during
stellar evolution. Its development in proto-neutron stars spun-up by supernova fallback has also been put forward as a scenario to
explain the formation of very magnetized neutron stars called magnetars. Using three-dimensional direct numerical simulations,
we model the proto-neutron star interior as a stably stratified spherical Couette flow with the outer sphere that rotates faster than
the inner one. We report the existence of two subcritical dynamo branches driven by the Tayler instability. They differ by their
equatorial symmetry (dipolar or hemispherical) and the magnetic field scaling, which is in agreement with different theoretical
predictions (by Fuller and Spruit, respectively). The magnetic dipole of the dipolar branch is found to reach intensities compatible
with observational constraints on magnetars.
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1 INTRODUCTION

Magnetars are a class of neutron stars that exhibit magnetic fields
whose dipolar component reaches 1014–1015 G, which makes them
the strongest fields observed in the Universe. Their dissipation are
thought to power a wide variety of emissions like giant flares (Evans
et al. 1980; Hurley et al. 1999, 2005; Svinkin et al. 2021), fast ra-
dio bursts (CHIME/FRB Collaboration et al. 2020; Bochenek et al.
2020), and short chaotic X-ray bursts (Gotz et al. 2006; Coti Ze-
lati et al. 2018, 2021). Combined with a millisecond rotation, they
may produce magnetorotational explosions, which are more energetic
than standard supernovae explosions (Burrows et al. 2007; Dessart
et al. 2008; Takiwaki et al. 2009; Kuroda et al. 2020; Bugli et al.
2020, 2021, 2023; Obergaulinger & Aloy 2020, 2021, 2022). The
origin of these magnetic fields is therefore a crucial question to un-
derstand magnetars and their association to extreme events such as
gamma-ray bursts or fast radio bursts. Two classes of scenarios can be
distinguished for magnetar formation: (i) the merger of a neutron star
binary, which may explain the plateau phase and the extended emis-
sion in X-ray sources associated with short gamma-ray bursts (Met-
zger et al. 2008; Lü & Zhang 2014; Gompertz et al. 2014). These
events are interesting for their multimessenger signature but are ex-
pected to be too rare to be the main formation channel of Galactic
magnetars, (ii) the core-collapse of a massive star, which is confirmed
by the observation of Galactic magnetars associated with supernova
remnants (Vink & Kuiper 2006; Martin et al. 2014; Zhou et al. 2019).
In the latter case, the amplification of the magnetic field may be due
either to the magnetic flux conservation during the collapse of the
iron core of the progenitor star (Ferrario & Wickramasinghe 2006;
Hu & Lou 2009; Schneider et al. 2020) or to a dynamo action in
the newly born proto-magnetar. Indeed, two dynamo mechanisms
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have already been studied by numerical simulations: the convective
dynamo (Thompson & Duncan 1993; Raynaud et al. 2020, 2022;
Masada et al. 2022; White et al. 2022) and the magnetorotational
instability (MRI)-driven dynamo (Obergaulinger et al. 2009; Mösta
et al. 2014; Reboul-Salze et al. 2021, 2022; Guilet et al. 2022).
They have been shown to produce magnetar-like magnetic fields for
millisecond rotation periods of the proto-magnetar, especially for pe-
riods 𝑃 ≲ 10 ms for the convective dynamo (Raynaud et al. 2020,
2022). These scenarios rely on the hypothesis that the rotation of the
proto-magnetar is determined by the rotation of the progenitor core.
However, it is still uncertain whether there are enough fast rotating
progenitor cores to form all the observed magnetars in the Milky
Way, which represent ∼ 10 − 40 % of the Galactic neutron star pop-
ulation (Kouveliotou et al. 1994; Woods & Thompson 2006; Gill &
Heyl 2007; Beniamini et al. 2019).

In Barrère et al. (2022), we developed a new magnetar formation
scenario in which the rapid rotation rate of the proto-magnetar is
not determined by the progenitor core but by the ejected matter that
remains gravitationally bound to the proto-magnetar and eventually
falls back on the proto-magnetar surface ∼ 5 − 10 s after the core-
collapse. Since the accretion is asymmetric, the fallback matter trans-
fers a significant amount of angular momentum to the surface (Chan
et al. 2020; Janka et al. 2022), which makes the surface rotate faster
than the core. In Barrère et al. (2022), we argue that this spin-up trig-
gers the amplification of the magnetic field through the Tayler-Spruit
dynamo mechanism. This dynamo mechanism can be described as a
loop: (i) a poloidal magnetic field is sheared into a toroidal one (Ω–
effect), (ii) the toroidal field becomes Tayler unstable after reaching
a critical value (Tayler 1973; Pitts & Tayler 1985), and (iii) the Tayler
instability regenerates a poloidal field (Fuller et al. 2019; Skoutnev
et al. 2022; Ji et al. 2023).

The Tayler-Spruit dynamo was first modelled by Spruit (2002) to
explain the angular momentum transport in stellar radiative zones.
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2 Barrère et al.

Figure 1. Left: Bifurcation diagram of the time and volume averaged Elsasser number (and root mean square magnetic field) versus the Rossby number.
Distinct dynamo branches are represented: dipolar (red), quadrupolar (mauve), hemispherical (green), and kinematic (black) whose respective thresholds are
𝑅𝑜𝑐

D ∼ 0.19, 𝑅𝑜𝑐
Q ∼ 0.7, 𝑅𝑜𝑐

H ∼ 0.37, and 𝑅𝑜𝑐
W ∼ 0.62. The hydrodynamic instability is triggered for 𝑅𝑜𝑐

hyd > 0.177. Dark green circles are stationary
hemispherical dynamos and light green ones display parity modulations. Black crosses indicate failed dynamos, empty circles metastable solutions. Arrows
attached to circles indicate the initial condition of the associated simulation. The black half empty circle specifies that the solution was found to be metastable in
a simulation and stable in another. The error bars indicate the standard deviation. Right: snapshots of the magnetic field lines and surface radial fields associated
to the different main dynamo branches at 𝑅𝑜 = 0.75: dipolar (top), hemispherical (middle), and kinematic (bottom).

Fuller et al. (2019) provided a revised description, which tackles the
previous critics of Spruit’s model (see Denissenkov & Pinsonneault
2007; Zahn et al. 2007) and yields different predictions. Their ana-
lytical results are now often included in stellar evolution codes (see
e.g. Eggenberger et al. 2005; Cantiello et al. 2014; Eggenberger
et al. 2019b,a; den Hartogh et al. 2020; Bonanno et al. 2020).
Though this dynamo has long been debated in direct numerical sim-
ulations (Braithwaite 2006; Zahn et al. 2007), Petitdemange et al.
(2023) recently reported a dynamo solution sharing many charac-
teristics with the Tayler-Spruit model. Their numerical simulations
modelled a stellar radiative zone, where the shear is negative, that is,
the rotation rate decreases in the radial direction. In this Letter, we
demonstrate that the Tayler instability can sustain different dynamo
branches in the presence of positive shear, which gives strong support
to the magnetar formation scenario of Barrère et al. (2022).

2 NUMERICAL SETUP

We perform three-dimensional (3D) direct numerical simulations
of a stably stratified and electrically conducting Boussinesq fluid
with the pseudo-spectral code MagIC (Wicht 2002; Gastine &
Wicht 2012; Schaeffer 2013). The fluid has a constant density
𝜌 = 3.8 × 1014 g cm−3 (which corresponds to a proto-neutron star
mass of 𝑀 = 1.4 M⊙) and evolves between two concentric spheres
of radius 𝑟𝑖 and 𝑟𝑜 = 12 km, rotating at the angular frequencies Ω𝑖

and Ω𝑜 = 2𝜋 × 100 rad s−1, respectively. The imposed differential
rotation is characterized by the Rossby number 𝑅𝑜 ≡ 1−Ω𝑖/Ω𝑜 > 0,
which is varied between 0.125 and 1.2. This spherical Taylor-Couette
configuration with positive shear prevents the development of the
MRI and allows us to study the system in a statistically steady
state. We impose no-slip and insulating boundary conditions at
the inner and outer spheres. In all the simulations, we keep fixed

the other dimensionless control parameters: the shell aspect ratio
𝜒 ≡ 𝑟𝑖/𝑟𝑜 = 0.25, the thermal and magnetic Prandtl numbers
𝑃𝑟 ≡ 𝜈/𝜅 = 0.1 and 𝑃𝑚 ≡ 𝜈/𝜂 = 1, respectively, the Ekman
number 𝐸 ≡ 𝜈/(𝑑2Ω𝑜) = 10−5, and the ratio of the Brunt-Väisälä
to the outer angular frequency 𝑁/Ω𝑜 = 0.1. The coefficients 𝜈, 𝜅, 𝜂,
and 𝑑 ≡ 𝑟𝑜 − 𝑟𝑖 are respectively the kinematic viscosity, the thermal
diffusivity, the resistivity, and the shell width. The magnetic energy
is measured by the Elsasser number Λ ≡ 𝐵2

rms/(4𝜋𝜌𝜂Ω𝑜). The sim-
ulations are initialized either from a nearby saturated state, or with
a weak (Λ = 10−4) or a strong (Λ = 10) toroidal axisymmetric
field with a given equatorial symmetry;it can be either dipolar (i.e.
equatorially symmetric with 𝑙 = 2, 𝑚 = 0) or quadrupolar (i.e. anti-
symmetric with 𝑙 = 1, 𝑚 = 0). We define a turbulent resistive time
𝜏𝜂 =

(
𝜋𝑟𝑜/ℓ̄

)2 /𝜂 ∼ 0.2𝑑2/𝜂, where ℓ̄ = 10 is the typical value of
the average harmonic degree of the time-averaged magnetic energy
spectrum. In the following, we will term a solution metastable when
a steady state is sustained for a time interval Δ𝑡 > 0.3𝜏𝜂 ,and stable
for Δ𝑡 ⩾ 𝜏𝜂 (up to 5.7𝜏𝜂 for the simulation at 𝑅𝑜 = 0.2).

3 RESULTS

We find in our set of simulations several dynamo branches rep-
resented by different colours in the bifurcation diagram shown in
Fig. 1. When the differential rotation is low, the flow can not amplify
a weak magnetic field (black crosses), but when 𝑅𝑜 > 𝑅𝑜𝑐W ∼ 0.62,
the magnetic field grows exponentially to reach a metastable or a
stable saturated dynamo state (black dots). This kinematic dynamo is
driven by an hydrodynamic instability of the Stewartson layer whose
threshold is 𝑅𝑜𝑐hyd ∼ 0.175 (dashed vertical black line), which is in
agreement with Hollerbach (2003). When 𝑅𝑜 ≳ 0.8, the kinematic
growth is followed by a non-linear growth and the system transitions
directly to another branch with a larger magnetic energy (green cir-
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Figure 2. Time-averaged ratio of the magnetic energy to the kinetic energy
densities as a function of the Rossby number. The error bars indicate the
standard deviation.

cles). Restarting from a nearby saturated solution or a strong toroidal
field with quadrupolar symmetry (mauve dashed arrows), we find
that the stability of this branch extends to Rossby number as low
as 𝑅𝑜𝑐H ∼ 0.37 < 𝑅𝑜𝑐W, which indicates that this dynamo is sub-
critical. By starting from a strong toroidal field with dipolar sym-
metry, we observe that this subcritical branch is in bistability with
another one which presents even stronger saturated magnetic fields
𝐵rms ∈ [4 × 1014, 1.1 × 1015] G (red circles). This branch is also
subcritical since it can be maintained for Rossby numbers as low as
𝑅𝑜 > 𝑅𝑜𝑐D ∼ 0.19. Moreover, the two subcritical branches do not
only differ by their magnetic field strength but also by their equa-
torial symmetry, as seen in the 3D snapshots and the surface maps
of the magnetic field in Fig. 1. Indeed, the magnetic field shows
a dipolar symmetry on the stronger dynamo branch, whereas it is
hemispherical on the weaker one. The latter can be interpreted as
the superposition of modes with opposite equatorial symmetry (Gal-
let & Pétrélis 2009), which is consistent with the fact that we do
find quadrupolar solutions (mauve circles in Fig. 1). These are only
metastable for 𝑅𝑜 > 𝑅𝑜𝑐Q ∼ 0.7 and transition to a stable dipolar
or hemispherical solution. Finally, we note that the hemispherical
dynamos with 𝑅𝑜 ≳ 0.8 (light green circles in Figs 1 and 2) display
parity modulations (i.e. the solution evolves between hemispheri-
cal, dipole, and quadrupole symmetric states). This behaviour is
reminiscent of the so-called Type 1 modulation identified in other
dynamo setups (Knobloch et al. 1998; Raynaud & Tobias 2016) and
likely results from the coupling of modes with opposite parity as the
equatorial symmetry breaking of the flow increases at larger Rossby
numbers.

The difference between the three dynamo branches is also clear
in Fig. 2, where we see that the hemispherical branch saturates be-
low the equipartition, with an energy ratio increasing with 𝑅𝑜 from
∼ 0.014 up to ∼ 0.56. By contrast, the dynamos of the dipolar branch
are in a super-equipartition state (𝐸𝑏/𝐸𝑘 > 1) and follow the mag-
netostrophic scaling 𝐸𝑏/𝐸𝑘 ∝ 𝑅𝑜−1 characteristic of the Coriolis-
Lorenz force balance (Roberts & Soward 1972; Dormy 2016; Aubert
et al. 2017; Dormy et al. 2018; Augustson et al. 2019; Seshasayanan
& Gallet 2019; Raynaud et al. 2020; Schwaiger et al. 2019). This
is also confirmed by force balance spectra shown in Fig. S1 in the
Supplemental Materials.

Both subcritical dynamos show magnetic fields concentrated along
the rotation axis, which differs significantly from the subcritical so-

Figure 3. Snapshots of the azimuthal slices of the angular velocity (left)
and the magnetic field along the cylindrical radius 𝑠 ≡ 𝑟 sin 𝜃 (right) of the
dipolar dynamo at 𝑅𝑜 = 0.75.

lutions found with a negative shear by (Petitdemange et al. 2023) ;
this is also strikingly different from the magnetic field generated on
the equatorial plane by the kinematic dynamo (see 3D snapshots of
Fig. 1). This suggests that the dipolar and hemispherical dynamos
are driven by a different mechanism. We argue that they are driven
by the Tayler instability according to the following arguments. First,
the axisymmetric toroidal magnetic component is clearly dominant
since it contains 53 − 88 % of the total magnetic energy. Second, the
simulations show a poloidal magnetic field with a dominant 𝑚 = 1
mode (see Supplemental Materials Figs S2 and S3), which is the
most unstable mode of the Tayler instability (Zahn et al. 2007; Ma
& Fuller 2019). In the azimuthal cut of the magnetic field compo-
nent 𝐵𝑠 in Fig. 3, the Tayler mode also appears clearly close to the
poles, where it is expected to develop for a toroidal field generated
by the shearing of a poloidal field (Goossens et al. 1981). This is also
consistent with the 3D snapshots of the dipolar and hemispherical
branches in Fig. 1 where the toroidal magnetic field seems prone to
a kink instability. Third, as in Petitdemange et al. (2023), the sys-
tem bifurcates from the kinematic to the hemispherical branch in the
vicinity of the threshold of the Tayler instability (Spruit 1999, 2002)

Λ𝑐
𝜙 ≡

𝐵𝑐
𝜙

2

4𝜋𝜌𝜂Ω𝑜
∼ 𝜒

1 − 𝜒

𝑁

Ω𝑜

√︂
𝑃𝑟

𝐸
∼ 3.3 . (1)

Indeed, if we focus on the stable and metastable kinematic solutions
found at 𝑅𝑜 = 0.75, we see in Fig. 4 that the local maximum of
the toroidal axisymmetric field is in both cases close to the critical
value above which it is expected to become unstable. The bifurcation
from the kinematic toward the hemispherical branch that is observed
for the metastable solution appears hence as the result of turbulent
fluctuations departing far enough above the threshold of the Tayler
instability.

Finally, we compare our numerical results to the theoretical pre-
dictions regarding the saturation of the Tayler-Spruit dynamo. Note
that these predictions assume the scale separation 𝜔𝐴 ≪ Ω𝑜 ≪ 𝑁 ,

where the Alfvén frequency is defined by 𝜔𝐴 ≡ 𝐵𝜙/
√︃

4𝜋𝜌𝑟2
𝑜 ∼

12.1
(
𝐵𝜙/1015 G

)
Hz. Our numerical models assume 𝑁/Ω𝑜 = 0.1

to limit the computational costs, whereas for a typical PNS spun up
by fallback to a period of 1 − 10 ms we expect 𝑁/Ω𝑜 ∼ 1 − 10. On
the other hand, the achieved magnetic field follows the right scale
separation with 𝜔𝐴/Ω𝑜 ≲ 0.02, which is expected to determine the
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Figure 4. Time series of the maximum along the cylindrical radius 𝑠 of
the axisymmetric toroidal magnetic energy measured locally at 𝑧 = 0.45𝑟𝑜 ,
for stable (black) and metastable (green) kinematic dynamos at 𝑅𝑜 = 0.75.
The dashed red line indicates the analytical threshold of the Tayler instability
(equation 1). Dark lines show a running average and dotted green lines around
𝑡 ∼ 20 s indicate missing data.

saturation mechanism of the Tayler instability (Ji et al. 2023). Fig-
ure 5 displays the axisymmetric toroidal and poloidal magnetic fields
(top), the dipole field (middle) and the Maxwell torque (bottom) as a
function of an effective shear rate 𝑞 measured locally in the saturated
state of the dynamo (see Supplemental Materials Fig. S4). For the
dipolar branch (red), we find that the power laws 𝐵𝑚=0

tor ∝ 𝑞0.36±0.05

and 𝐵𝑚=0
pol ∝ 𝑞0.62±0.07 fit the saturated magnetic field, while we

find 𝐵𝑠𝐵𝜙 ∝ 𝑞1.0±0.02 or 𝐵𝑚=0
𝑠 𝐵𝑚=0

𝜙 ∝ 𝑞1.1±0.04, depending on
whether we take into account non-axisymmetric contributions to
compute the Maxwell torque 𝑇M. The scaling exponents are thus in
good agreement with the theoretical predictions of Fuller et al. (2019)
𝐵𝑚=0

tor ∝ 𝑞1/3, 𝐵𝑚=0
pol ∝ 𝑞2/3 and 𝑇M ∝ 𝑞 (red dotted lines in Fig. 5).

Contrary to their prediction, however, our torque is not dominated by
the axisymmetric magnetic field, which may be related to their as-
sumption of a stronger stratification. Interestingly, the hemispherical
branch (green) does not follow the same scalings: for 𝑞 > 0.2, we
find 𝐵𝑚=0

tor ∝ 𝑞2.1±0.31 and 𝐵𝑚=0
pol ∝ 𝑞2.0±0.28 for the magnetic field,

and 𝐵𝑠𝐵𝜙 ∝ 𝑞2.7±0.40 or 𝐵𝑚=0
𝑠 𝐵𝑚=0

𝜙 ∝ 𝑞3.8±0.70 for the Maxwell
torque. These results globally support Spruit’s predictions (Spruit
2002) 𝐵𝑚=0

tor ∝ 𝑞, 𝐵𝑚=0
pol ∝ 𝑞2 and 𝑇M ∝ 𝑞3 (green dotted lines),

despite some tension concerning the scaling of the toroidal mag-
netic field. If we focus on the dipole field, we find the following
power laws: 𝐵dip ∝ 𝑞0.66±0.03 and 𝐵dip ∝ 𝑞1.1±0.4, for the dipolar
and hemispherical branches, respectively. The dipole field on the
strong branch therefore follows the same scaling as the axisymmetric
poloidal field and is only ∼ 33% weaker.

4 CONCLUSIONS

To conclude, we show that the Tayler-Spruit dynamo also exists in
the presence of positive shear. We demonstrate for the first time
the existence of two subcritical branches of this dynamo with dis-
tinct equatorial symmetries, dipolar and hemispherical. Moreover,
the former follows Fuller’s theoretical predictions, while the latter

Figure 5. Root mean square (RMS) toroidal and poloidal axisymmetric mag-
netic fields (top), RMS magnetic dipole (middle), and RMS magnetic torque
(bottom) as a function of the time-averaged shear rate measured in the steady
state, for the dipolar (red) and hemispherical (green) dynamo branches. Dot-
ted lines shows the best fits obtained with Fuller’s (red) and Spruit’s (green)
theoretical scaling laws, respectively.

is in overall agreement with Spruit’s model. Compared to the study
of Petitdemange et al. (2023) that use a negative shear, our results
present a similar dynamical structure, with a bifurcation diagram
characterized by a bistability between kinematic and subcritical dy-
namo solutions. The magnetic field of their Tayler-Spruit dynamo
is, however, different since it is characterized by a smaller scale
structure localized near the inner boundary in the equatorial plane,
and induces a torque scaling according to Spruit’s prediction. Our
study shows a magnetic field geometry concentrated near the pole in
agreement with the expectation of the Tayler-Spruit dynamo and a
more complex physics, with the existence of two different branches
that can not be captured by a single scaling law. Extended parameter
studies will be needed to further assess the impact of the resistivity
and the stratification on this dynamo instability and better constrain
its astrophysical implications.

Our results are of particular importance for stellar evolution mod-
els by confirming the existence of the Tayler-Spruit dynamo and by
deepening our physical understanding of its complex dynamics. They
also give strong support to the new magnetar formation scenario pro-
posed by Barrère et al. (2022), which relies on the development of a
Tayler-instability driven dynamo in the presence of a positive shear.
We validate the assumption that the magnetic dipole is a significant
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fraction of the poloidal magnetic field and follows the same scal-
ing. Extrapolating our results for the dipolar branch to 𝑞 ∼ 1 as
expected in Barrère et al. (2022), we obtain a magnetic dipole inten-
sity of ∼ 3.2 × 1014 G and an even stronger axisymmetric toroidal
field of ∼ 2.1 × 1015 G. These orders of magnitude are similar to
those found in Barrère et al. (2022) for the same rotation period of
𝑃𝑜 ≡ 2𝜋/Ω𝑜 = 10 ms, and fall right in the magnetar range (Olausen
& Kaspi 2014).
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ABSTRACT
In this Supplemental Material, we first detail the Boussinesq equations and numerical setup in Section 1 and give an overview
of all simulations in Section 2. Then, we present the typical time-averaged spectra of the dynamos (Sections 3 and 4) and the
method used to measure the local shear rate 𝑞 in our simulations (Section 5).

1 GOVERNING EQUATIONS AND NUMERICAL SETUP

We model the proto-neutron star as a spherical stably stratified Couette flow whose surface rotates at the angular frequency Ω𝑜 = 200𝜋 rad s−1.
In the rotating frame, the MHD equations under the Boussinesq approximation read

∇ · v = 0 , (1)

𝐷𝑡v = − 1
𝜌
∇𝑝′ − 2Ω𝑜e𝑧 × v + 𝛼𝑔𝑇 ′e𝑟 + 1

4𝜋𝜌
(∇ × B) × B + 𝜈Δv , (2)

𝐷𝑡𝑇
′ = 𝜅Δ𝑇 ′ , (3)

𝜕𝑡B = ∇ × (u × B) + 𝜂ΔB , (4)
∇ · B = 0 , (5)

where v is the velocity field, B is the magnetic field, 𝑝′ is the pressure perturbation, 𝑇 ′ is the super-adiabatic temperature, 𝜌 is the uniform
density, 𝑔 = 𝑔𝑜𝑟/𝑟𝑜 is the gravitation field, and 𝛼 ≡ 𝜌−1 (𝜕𝑇 𝜌)𝑝 is the thermal expansivity. We assume that the viscosity 𝜈, the thermal
diffusivity 𝜅 and the magnetic diffusivity 𝜂 are constant. We apply no-slip, electrically insulating, and fixed temperature boundary conditions
on both shells. In the MagIC code, the length is scaled in units of shell thickness 𝑑 ≡ 𝑟𝑜 − 𝑟𝑖 where 𝑟𝑖 and 𝑟𝑜 are the inner and outer radii,
the time in units of viscous time 𝑑2/𝜈, the temperature in units of the fixed temperature gap between the shells Δ𝑇 ≡ 𝑇𝑜 − 𝑇𝑖 > 0, and the
magnetic field in units of

√︁
4𝜋𝜌𝜂Ω𝑜. The stratification is measured by the Rayleigh number 𝑅𝑎 ≡ 𝑁2𝑑4/(𝜈𝜅), where 𝑁 ≡

√︁
𝛼𝑔𝑜Δ𝑇/𝑑 is the

Brunt-Väisälä frequency at the outer radius.

2 LIST OF SIMULATION MODELS

Tables 1 and 2 summarize the key parameters of the simulations carried out in this study.

© 2023 The Authors
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Figure 1. Time-averaged rms force spectra for the dipolar (left) and hemispherical (right) dynamos at 𝑅𝑜 = 0.75. The rms forces are averaged over the whole
computational domain without excluding boundary layers.

3 FORCE BALANCE

Fig. 1 shows a spectrum of the rms forces in the saturated state of the two Tayler-Spruit dynamo branches, following the formalism of Aubert
et al. (2017); Schwaiger et al. (2019). The dipolar dynamo saturates due to a balance between the Lorentz force (red line) and the ageostrophic
Coriolis force (dashed green line) at all scales (spectrum on the left in Fig. 1). This confirms the magnetostrophic balance we deduced from
Fig. 2 in the Letter. For the hemispherical dynamo, the same balance is found at small scales (ℓ ≳ 20), but at large scales the inertial force is
strong enough to be in balance with the ageostrophic Coriolis force and the Lorentz force.

4 TIME-AVERAGED SPECTRA

A wide range of modes ℓ are present in the typical spectra of a dipolar Tayler-Spruit dynamo of Fig. 2. The magnetic spectrum shows the
presence of a significant large-scale axisymmetric poloidal field. The even (odd) degrees ℓ dominate in the poloidal (toroidal) axisymmetric
magnetic spectra, which confirms the dipolar equatorial symmetry at large scales.

The non-axisymmetric modes triggered differ depending on whether the dynamo is Tayler-instability driven, as seen in Figures 2 and 3.
As expected for the Tayler-Spruit dynamo, the dominating mode is the axisymmetric toroidal magnetic field, but we also observe a dominant
𝑚 = 1 mode in the poloidal magnetic energy, which is a signature of the Tayler instability. By contrast, we see that a wider range of orders
𝑚 ∈ [1, 5] are present in the poloidal magnetic energy of the kinematic dynamo.

5 MEASURE OF THE SHEAR RATE

The differential rotation is characterized by a dimensionless shear rate 𝑞 = 𝑟𝜕𝑟 lnΩ. We define an effective shear rate based on the time average
of the rotation profile in the saturated state. Since it is approximately cylindrical (see Fig. 3), we measure Ω locally at a given height 𝑧 = 0.45𝑟𝑜
and consider its variation as a function of the cylindrical radius 𝑠 (see Fig. 4). This allows us to avoid the Ekman layers, which form around the
inner shell. In most of the simulations, the shear is found in a broad region centred on the tangent cylinder, especially in 𝑠 ∈ [0.1, 0.5] 𝑟𝑜. We
therefore measure the average slope of the profile in this interval (see Fig. 4):

𝑞 ≡ logΩ(𝑠 = 0.5𝑟𝑜) − logΩ(𝑠 = 0.1𝑟𝑜)
log 0.5𝑟𝑜 − log 0.1𝑟𝑜

(6)
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Figure 2. Time averaged kinetic (top) and magnetic (bottom) energy density spectra of the dipolar Tayler-Spruit dynamo at 𝑅𝑜 = 0.75.

Figure 3. Time averaged 𝑚-spectra of the magnetic energy density for the hemispherical Tayler-Spruit dynamo at 𝑅𝑜 = 0.85 (left) and the kinematic dynamo
at 𝑅𝑜 = 0.75 (right).
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Figure 4. Rotation profile Ω(𝑠) at 𝑧 = 0.45𝑟𝑜 in the simulation Ro0.75s. The green region 𝑠 ∈ [0.1, 0.5] 𝑟𝑜 is the zone where we measure the effective shear
rate 𝑞 (slope of the blue dashed line). In this example, 𝑞 ∼ 0.06. The vertical red line indicates the position of the tangent cylinder.
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